Implementation of new strategies for the OLPS toolbox
New types of strategies for on-line portfolio selection in computational finance.
Our developers have developed new types of strategies for on-line portfolio selection in computational finance.
The first one is “Follow the leading history” (FLH) method described in “Efficient learning algorithms for changing environments” article by E. Hazan and C. Seshadhri. Core of the strategy lies in selection of an optimal solution among several ones suggested by several expert algorithms. Each of them uses the same optimization method but every expert makes calculations based on data from different periods. Selection of the optimal number and type of experts is specified in description of the strategy.
The second implemented strategy is Commission Avoidant Portfolio Ensembles (CAPE) described in “Online Learning of Commission Avoidant Portfolio Ensembles” article by G. Uziel and R. El-Yaniv. In this strategy along with existing expert algorithms there’s one more artificial expert added. This artificial expert allows to keep existing portfolio unchanged and to avoid expenses for making operations, maximizing profit in a long-term outlook.
Similar Projects
Virtual try-on tool for makeup products
The system consists of a face detection and segmentation model and an algorithm that allows recoloring objects without losing their original texture.
Online sign language interpreter
AI algorithm that converts video of a person using sign language into a text transcript
Workout helper app
Mobile app for the estimation of proper body positions during the workout.